TRANSFORMATION OF GRAYANOTOXIN II TETRAACETATE TO A 1,5-SECOGRAYANANE DERIVATIVE

Tadamasa TERAI*, Haruo MEGURI*, Nobuyuki HAMANAKA**, Takao MATSUZAKI***, Akio FURUSAKI, Tsuyoshi KATO, and Takeshi MATSUMOTO

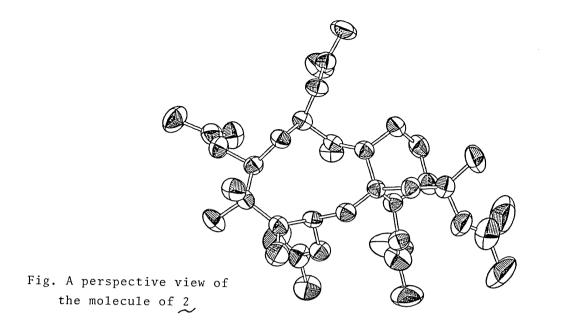
- *Department of Applied Chemistry, Osaka Institute of Technology, Asahi-ku Osaka 535
- **Research Institute, Ono Pharmaceutical Industries, Shimamoto-cho, Osaka 618
- ***Central Research Laboratories, Mitsubishi Chemical Industries, Midori-ku Yokohama 227

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060

Irradiation of grayanotoxin II tetraacetate with UV light in the presence of lead tetraacetate in benzene afforded 1-<u>epi</u>-grayanol A pentaacetate in high yield.

As shown in previous papers, grayathol A^1 and leucothols 2 , modified grayanoid diterpenes isolated from <u>Leucothoe grayana Max.</u>, possess the C_1 atom antipodal to that of grayanotoxins. Occurrence of the 1,5-secograyanotoxins, grayanols A (2a) and B^3 , in the same plant together with the above three kinds of diterpenes suggests that the 1,5-seco compounds are the possible biogenetic precursors for grayathol and leucothols, and even for grayanotoxins. In the present paper we report the in vitro conversion of a grayanotoxin derivative to a 1,5-secograyanane derivative.

AcO
$$R_1$$
 R_2 R_1 R_2 R_1 R_2 R_2 R_3 R_4 R_4 R_5 R_5 R_6 R_7 R_8 R_9 R_9


Irradiation of grayanotoxin II tetraacetate (1) in the presence of Pb(OAc) $_4$ (1.2 mol, rt, 3.5 h, benzene soln, high pressure Hg lamp) afforded, after usual workup, a pentaacetate 2, $_4$, $_5$) $_{30}$ H $_{42}$ O $_{11}$ $_6$, mp 137 140 °C, in an 81% yield. The $_1$ H and $_1$ C nmr spectra $_5$) of 2 showed that an allylic secondary acetoxyl group

 $(\delta_{\rm H}$ 5.20, $\delta_{\rm C}$ 71.1, d) and a carbonyl group $(\delta_{\rm C}$ 212.1, s) were newly formed. Since it is already known⁷⁾ that similar treatment cleaves the C_5-C_{10} bond of 5α-hydroxy-steroids to give the corresponding 1(10)-cyclodecen-5-ones, the above findings were interpreted to indicate formation of a 1,5-secograyanotoxin derivative. Comparison of $^1{\rm H}$ nmr data of $^2{\rm L}$ with those of grayanol pentaacetates⁸⁾, however, revealed that the product was neither pentaacetylgrayanol A nor B.

Mild alkaline alcoholysis (EtOH, NaBH $_4$ (6 mol, as a base), rt, 3 h) of 2 splits off a molecule of acetic acid to give hemiketal 3^9) ($\delta_{\rm C}$ 100.5, s, no carbonyl carbon atom), ${\rm C}_{28}{\rm H}_{40}{\rm O}_{10}^{6}$, mp 202—204 °C, in a 75% yield. The nmr spectrum of 3 in the presence of Eu(fod) $_3$ indicated that Eu $^{3+}$ coordinated mainly around the 0 atom at ${\rm C}_3$ and large induced shifts were observed for protons at ${\rm C}_3$, ${\rm C}_6$ and ${\rm C}_{20}$ [S(CDCl $_3$): 7.20 (${\rm C}_3$ -H), 3.94 (${\rm C}_6$ -H), 4.22 (${\rm C}_{20}$ -H), 2.72 (${\rm C}_{20}$ -H), 1.96 (${\rm C}_4$ -Me), 1.27 (${\rm C}_4$ -Me), 1.80 (${\rm C}_1$ -H), 0.96 (${\rm C}_{14}$ -H), 0.92 (${\rm C}_{16}$ -Me), 2.20 (Ac), 2.10 (Ac), 1.22 (Ac), 0.90 (Ac)]. These shift values as well as the observed ${\rm J}$ values 9) of 3 are compatible only with the stereostructure depicted above. Accordingly the parent compound 2 is formulated as 1-epi-grayanol A tetraacetate. Comparison of the ${\rm J}$ values of ${\rm 2}^{5}$) and ${\rm 3}^{9}$) shows that conformations of the two compounds are similar to each other. The ten-membered ring of 2 therefore adopts predominantly the BCC 11) conformation in the solution state, although it may be flexible to some extent.

Unambiguous proof for the proposed structure 2 was provided by X-ray analysis of a single crystal of 2. The crystal data for the chloroform-d solvate of 2 are as follows: tetragonal, space group P4₃2₁2, a=11.012(2), c=56.154(6) Å, Z=8, D_c =1.246 gcm⁻³. 3173 unique intensity data for 20<140° were collected on an automatic, four-circle diffractometer with Ni-filtered Cu Kα radiation. structure was solved by the Monte Carlo direct $method^{12}$, using the 40 strongest reflections as the starting set. The 189th random phase set led to the correct solution; an E-map based on 825 phases afforded 38 out of the 45 independent nonhydrogen atoms. A difference Fourier map yielded all the remaining non-hydrogen atoms except the chloroform carbon atom, and revealed that the chloroform molecule is statistically distributed between two positions related by the two-fold rotation axis. After 24 hydrogen atoms had been located in a second difference Fourier map, several cycles of the block-diagonal least-squares refinement were carried out including these hydrogen atoms; the final R value was 8.4%. A perspective view of the molecule and the atomic coordinates are given in the Figure and in the Table respectively. It may be of interest that the conformation of 2 in the crystalline state is quite different from the main conformation in the solution state 13).

In view of increasing importance of ten-membered terpenoids as bioactive substances, the above $Pb(OAc)_4$ induced skeletal transformation may be of some value as a new route to cyclodecane derivatives.

Table	The atomic coordinates						
Atom	x	у	z				
0(1)	0.7808	0.4979	-0.10657	C(12)	0.9486	0.6494	-0.17793
0(2)	0.8428	0.6773	-0.09210	C(13)	0.8938	0.6135	-0.20209
0(3)	0.3945	0.5150	-0.09951	C(14)	0.7549	0.6132	-0.19831
0(4)	0.4454	0.7090	-0.09457	C(15)	0.8252	0.4079	-0.19560
0(5)	0.3471	0.3739	-0.17913	C(16)	0.9215	0.4809	-0.20880
0(6)	0.4516	0.5876	-0.19534	C(17)	1.0538	0.4383	-0.20521
0(7)	0.3519	0.7065	-0.17078	C(18)	0.2361	0.4816	-0.13721
0(8)	0.6931	0.5961	-0.22125	C(19)	0.3680	0.2968	-0.13063
0(9)	0.6603	0.7923	-0.22426	C(20)	0.6932	0.7270	-0.14461
0(10)	0.8912	0.4597	-0.23424	C(21)	0.8592	0.5699	-0.09494
0(11)	1.0301	0.5866	-0.24826	C(22)	0.9686	0.4979	-0.08639
C(1)	0.6754	0.5558	-0.11767	C(23)	0.3952	0.6201	-0.08745
C(2)	0.5791	0.4586	-0.12014	C(24)	0.3238	0.6103	-0.06455
C(3)	0.4519	0.5092	-0.12301	C(25)	0.3774	0.6800	-0.19031
C(4)	0.3659	0.4317	-0.13862	C(26)	0.3264	0.7410	-0.21213
C(5)	0.4014	0.4374	-0.16513	C(27)	0.6523	0.6938	-0.23239
C(6)	0.5008	0.5222	-0.17490	C(28)	0.5985	0.6599	-0.25650
C(7)	0.6058	0.4460	-0.18384	C(29)	0.9432	0.5120	-0.25087
C(8)	0.7339	0.4989	-0.18335	C(30)	0.8995	0.4726	-0.27552
C(9)	0.7824	0.5245	-0.15794	C1(1)	0.5093	0.3998	-0.00782
C(10)	0.7141	0.6095	-0.14147	C1(2)	0.6279	0.5038	-0.04763
C(11)	0.9187	0.5603	-0.15789	C1(3)	0.5967	0.6314	-0.00263

References and Notes

- 1) A. Furusaki, S. Gasa, N. Hamanaka, R. Ikeda, and T. Matsumoto, Chem. Lett., 1979, 665.
- 2) A. Furusaki, N. Hamanaka, H. Miyakoshi, T. Okuno, and T. Matsumoto, Chem. Lett., 1972, 783.
- 3) S. Fushiya, H. Hikino, and T. Takemoto, Tetrahedron Lett., 1974, 183.
- 4) Compound 2 is obtained also by non-photochemical version⁷⁾ of Pb(OAc)₄ oxidation (rt, 24 h, 50% conversion, 40% yield).
- 5) m/e 578 (M⁺). 1 H nmr (200 MHz, CDC1 $_{3}$): δ 1.07, 1.13, 1.67 (each 3H, s), 1.96, 1.97, 1.99, 2.08, 2.13 (each 3H, s), 2.46 (1H, dd, $_{2}$ =16.0, 7.0 Hz, $_{2}$ -H), 2.67 (1H, d, $_{3}$ =16.0 Hz, $_{2}$ -H), 2.74 (1H, s, $_{4}$ M $_{1}$ =8 Hz, $_{2}$ -H), 5.33 (1H, s, $_{2}$ C $_{14}$ -H), 5.36 (1H, dd, $_{3}$ =11.0, 4.0 Hz, $_{3}$ -H), 5.62, 5.68 (each 1H, s, $_{2}$ C $_{20}$ -H), 5.65 (1H, d, $_{3}$ =6 Hz, $_{2}$ -H), 5.83 (1H, d, $_{3}$ =7.0 Hz, $_{2}$ -H). CD: (c=0.199, EtOH) [$_{2}$ 25 $_{2}$ 9=-5,112 . $_{3}$ 13 C nmr (CDC1 $_{3}$): δ 18.5 (q), 20.2 (q), 20.4 (q), 20.7 (q), 21.1 (q), 21.5 (q), 22.6 (q), 24.1 (t), 24.5 (q), 27.3 (t), 36.8 (t×2), 44.7 (d), 49.6 (d), 50.3 (s), 52.5 (s), 53.7 (t), 70.1 (d), 71.1 (d), 79.0 (d), 79.8 (d), 88.8 (s), 120.0 (t), 148.2 (s), 169.0 (s), 169.7 (s), 169.8 (s), 169.9 (s), 170.3 (s), 212.1 (s).
- 6) Satisfactory elemental analytical values were obtained for this compound.
- 7) H. Fuhrer, L. Lorenc, V. Palrović, G. Rihs, G. Rist, J. Kalvoda, and M. Lj. Mihailović, Helv. Chim. Acta, 62, 1770 (1979) and references cited therein.
- 8) We thank Dr. S. Fusiya, Tohoku University, for providing us with nmr data of grayanol derivatives.
- 9) m/e 536 (M⁺). 1 H nmr (100 MHz, CDC1₃): δ 0.83, 1.13, 1.61 (each 3H, s), 1.90, 1.92, 1.97, 2.05 (each 3H, s), 4.40 (1H, br.d, \underline{J} =6 Hz, C_1 -H), 4.80 (1H, dd, \underline{J} =4.0, 12.0 Hz, C_3 -H), 5.21 (1H, s, C_{14} -H), 5.42 (1H, d, \underline{J} =7.5 Hz, C_6 -H), 5.58, 5.72 (each 1H, br.s, C_{20} -H). 13 C nmr (CDC1₃): δ 16.7 (q), 20.5 (q), 20.9 (qX2), 21.1 (q), 21.4 (q), 22.6 (q), 25.8 (t), 26.1 (t), 27.3 (t), 38.9 (t), 43.1 (s), 49.0 (d), 50.1 (s), 50.2 (d), 53.3 (t), 69.1 (d), 72.5 (d), 74.9 (d), 79.6 (d), 89.2 (s), 100.5 (s), 114.6 (t), 153.0 (s), 168.6 (s), 169.7 (s), 169.8 (s), 170.3 (s).
- 10) The small <u>S</u> values for the Me groups at C₄ may be explained by the steric hindrance due to these groups to the coordination of Eu³⁺. Similar small relative <u>S</u> values for <u>gem</u>-diMe groups were observed also in model compounds 2,2-dimethyl-1-cyclohexanol [<u>S</u>(CDCl₃): 23.5 (C₁-H), \sim 18.1 (C₂-HX2), 11.5 (Me), 9.9 (Me)] and its acetate [<u>S</u>(CDCl₃): 24.3 (C₁-H), 12.1 (C_{2eq}-H), 10.6 (C_{2ax}-H), 6.20 (Me), 5.60 (Me)]. <u>S</u>= Δ 8 (ppm)/ Δ [Eu³⁺ (mol)/Substrate(mol)].
- 11) J.B. Hendrickson, J. Am. Chem. Soc., 89, 7037 (1967).
- 12) A. Furusaki, Acta Crystalogr., Sect. A, 35, 220 (1979).
- 13) The conformer in the crystalline state [θ (dihedral angle): C_1 - C_2 -81.0 (5)°, C_2 - C_3 147.7 (4)°, C_6 - C_7 151.2 (4)°] will not exhibit the observed splitting pattern in the nmr spectrum.